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Measurements of the oscillatory magnetoresistance of a high-quality graphite single crystal were made 
for all angles 0 between the magnetic field and the c axis, for magnetic fields up to 24 kG, and for tempera
tures from 1.22 to 4.22°K. The results were analyzed by a least-squares fitting to a generalized Landau 
formula. Oscillations due to electrons were observed for all orientations (including Hj_c, where the amplitude 
dropped by a factor 105), proving that the electron Fermi surfaces are closed. Although oscillations due to 
holes were not observed beyond 02^84°, indirect arguments show that the hole Fermi surfaces are also closed. 
Both electron and hole surfaces are elongated along the c axis and have anisotropy ratios of 12.1_1.4 and 
about 17, respectively. The electron surface is approximately ellipsoidal, whereas the hole surface is similar 
except for extended ends giving it a diamond-like shape. The results are consistent with a moderate degree 
of trigonal asymmetry about the c axis. Comparison between the electron density found from the volume of 
the electron Fermi surfaces and that determined previously from the nonoscillatory galvanomagnetic data 
confirms the theoretical prediction that there are four electron Fermi surfaces in the Brillouin zone. More 
indirect arguments show that there are two hole surfaces. Consideration of the size and location of these 
surfaces along the six zone edges parallel to the c axis leads to a new determination of A^—0.12 eV for the 
band parameter which represents the difference of potential between the two types of atomic sites in the 
graphite lattice. Analysis of the temperature and magnetic field dependence of the oscillatory amplitude 
yields effective mass values in the basal plane of (0.039_0.001)ra0 for electrons and (0.057_0.002)m0 for 
holes. These masses show an orientation dependence that is consistent with the derived Fermi surface 
anisotropics. The large amplitude and asymmetric shape of the oscillations in the magnetoconductivity, 
measured for H||c at 1.26 and 4.22 °K, are accurately described by the theory of Adams and Holstein. How
ever, there is an unexplained monotonic variation with magnetic field in the total magnetoconductivity. The 
effective change in temperature due to collision broadening AT is about 5 times greater than that estimated 
from the conductivity relaxation time. This discrepancy in AT is qualitatively explained and is related di
rectly to the fact, established from the data of Berlincourt and Steele, that the AT found from magnetoresist
ance oscillations is greater than that found from susceptibility oscillations on the same sample. 

I. INTRODUCTION tation of the magnetic field with respect to the crystallo-

THE Shubnikov-de Haas effect,1 an oscillatory de- S r aPh ic a x e s s o t h a t t h e s h a P e o f t h e F e r m i s u r f a c e m a ^ 

pendence of the electrical resistivity on the mag- b e deduced from such an orientation study. Although 
netic field, is directly related to the de Haas-van Alphen t h e r e h a s b e e n extensive work determining Fermi sur-
effect. Both are produced by the oscillation of the den- f a c e s u s m S t h e d e Haas-van Alphen effect,6 somewhat 
sity of states at the Fermi level caused by the quantiza- l e s s e f f o r t 7 h a s b e e n s P e n t u s m S t h e Shubnikov-de Haas 
tion of electron energy levels in the presence of a mag- e^ec^ *or this purpose. 
netic field.2'3 The oscillations are periodic in inverse T h e P r e s e n t investigation is a continuation of pre-
field and the period P is related to the extreme cross V10US w o r k 8 o n t h e oscillatory galvanomagnetic effects 
section of the Fermi surface Am perpendicular to the m high-quality graphite single crystals at 4.2°K with 
applied magnetic field by the Onsager4-Lifshitz5 relation the magnetic field parallel to the hexagonal c axis. This 

investigation represents the first study of the entire 
P=2ire/chAm. (1.1) highly anisotropic Fermi surfaces in graphite. The study 

The period, therefore, depends upon the relative orien- ™as "tended to all angles between the magnetic field 
il and the c axis (denned as 6) m the temperature range 

*PreSentaddress:DepartmentofPhysics,UniverSityofOregon, f r o m U 2 t o 4 ' 2 2 > Oscillations were observed a t all 
Eugene, Oregon. values of 0, including the mos t critical or ienta t ion of H 

t Present address: Computation Center, Stanford University, perpendicular to c, where the ampl i tude of the oscilla-
Palo Alto, California. !• . / n T r / ±i • • i 

*L. Shiibnikov and W. J. de Haas, Comm. Phys. Lab. Univ. t l 0 n s w a s extremely small . I n fact, the pr incipal reason 
Leiden, No. 207a (1930). why the magnetores is tance was used in this s t u d y was 

2 R. Peierls, Z. Physik 81, 186 (1933). _ _ _ _ _ _ _ 
3 L. D. Landau; see Appendix of D. Shoenberg, Proc. Roy. Soc. 

(London) A170, 341 (1939). 6 D. Shoenberg, Phil. Trans. Roy. Soc. London A245, 1 (1952)* 
4 L. Onsager, Phil. Mag. 43, 1006 (1952). 7 See literature cited in Ref. 8 and in A. H. Kahn and H. P. R. 
6 1 . M. Lifshitz; see notes added in proof of D. Shoenberg, Frederikse, Solid State Physics (Academic Press, Inc., New York, 

Progress in Low-Temperature Physics (North-Holland Publishing 1959), Vol. IX, p. 257. 
Company, Amsterdam, 1957), Vol. II, p. 226. 8 D. E. Soule, Phys. Rev. 112, 708 (1958). 
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that it afforded a very sensitive and accurate method 
for observing the oscillations at all orientations. 

The determination of the Fermi surface shape in 
graphite has added importance because it has been the 
subject of controversy. The de Haas-van Alphen effect 
showed two periods.6 As all the measurements were for 
small 0, two interpretations of the results were possible: 
(1) The periods correspond to the maximum and mini
mum cross sections of one surface which is open in the 
direction of the c axis,4-9 or (2) the periods correspond 
to the maximum cross sections of two closed surfaces 
which are elongated along the c axis.6'10 Both interpreta
tions were given theoretical support. The Sloncewski-
Weiss model11 (hereafter referred to as SW), which ex
presses the most general behavior of the energy in the 
neighborhood of the Fermi level, can give either possi
bility (1) or (2) by a suitable choice of parameters. 
Haering and Wallace12 reasoned that the observed value 
of the steady magnetic susceptibility could be under
stood only if the main resonance integral between planes 
7i were very small ( < 0.005 eV). This assumption, to
gether with the values of the de Haas-van Alphen 
periods, led to interpretation (1). Haering and Wallace 
obtained agreement with Kinchin's measured Hall co
efficient,13 but they could not account for later galvano-
magnetic14 and cyclotron resonance15 measurements 
which indicated that both electrons and holes were 
present. Further, they did not obtain agreement with 
the measured de Haas-van Alphen effective masses.6,8 

On the other hand, a choice of parameters based on 
interpretation (2) could account for both the de Haas-
van Alphen periods and masses.10 This work led to 
theoretical Fermi surface anisotropy ratios (ratio of 
length in the c direction to width in the a direction) in 
the range 11 to 13. Further agreement with this view 
was obtained by an analysis of the cyclotron resonance16 

and the nonoscillatory galvanomagnetic results.14'17 

More recently it has been shown that the steady mag
netic susceptibility can also be explained by using inter
pretation (2).18 From the cyclotron resonance results, 
the electron was found to have a smaller effective mass 
than the hole. From the de Haas-van Alphen type re
sults, the oscillatory term with the largest period was 
associated with the smaller mass, thereby identifying 
the Fermi surface with the smallest cross section as that 
due to electrons. 

Since the above arguments were indirect, it was felt 
important to make a direct experimental determination 

9 D. Shoenberg, Ref. 5, p. 259. 
10 J. W. McClure, Phys. Rev. 108, 612 (1957). 
11 J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958). 
12 R. R. Haering and P. R. Wallace, Phys. Chem. Solids 3, 253 

(1957). 
13 G. H. Kinchin, Proc. Roy. Soc. (London) A217, 9 (1953). 
14 D. E. Soule, Phys. Rev. 112, 698 (1958). 
15 J. K. Gait, W. A. Yager, and H. W. Dail, Phys. Rev. 103. 

1586 (1956). 
16 P. N. Nozieres, Phys. Rev. 109, 1510 (1958). 
17 J. W. McClure, Phys. Rev. 112, 715 (1958). 
18 J. W. McClure, Phys. Rev. 119, 606 (1960). 

of the Fermi surface shape by means of the Shubnikov-de 
Haas effect. A discussion of this work constitutes the 
first part of the paper. As the observed oscillatory struc
ture was complicated by the interference of the two 
components (electron and hole), a least-squares fitting 
to a two-carrier "generalized Landau formula" was per
formed on an electronic computer. At high 0, the elec
tron term could be seen alone, since the hole term was 
damped below the detectable level. The results dis
cussed in Sec. I l l show that the electron and hole sur
faces are closed, proving interpretation (2). The aniso
tropy ratios were found to be 12.1 and approximately 17, 
respectively. This information supports the previous 
conclusion, based upon the equality of carrier concen
tration8'14'17 and effective mass evaluation,8 that the 
carriers contributing to the oscillatory component of 
these galvanomagnetic effects represent the major part 
of the Fermi surfaces. The shape of the electron sur
face is approximately ellipsoidal whereas that of the 
hole is roughly "diamond-shaped." 

Not only does the extension of the range of the experi
ment provide the first direct determination of the 
Fermi surface shape in graphite, but it also pro
vides some of the largest and most asymmetrical 
Shubnikov-de Haas oscillations observed to date. Thus, 
a strong test is provided for recent theories of the effect, 
which constitutes the second part of the paper. A de
tailed study was made of the magnetoconductivity 
tensor at 1.26 and 4.22°K, for H parallel to c. Although 
the Onsager-Lifshitz relation is satisfactory for the 
period behavior, and the susceptibility oscillations are 
well described by the Landau3 and Lifshitz-Kosevitch19 

theories, there has been disagreement between theories 
in the literature concerning the amplitude and shape of 
the magnetoresistivity oscillations. In addition to the 
period variation, all theories also agree on the thermal 
damping factor which describes the dependence of the 
amplitude of the oscillation upon temperature. This 
factor, which was first derived by Landau, is 

tt=u/siji}iu, (1.2) 

where u=27r2kT/AEy T is the temperature and AE 
— fieH/m^c, the spacing between energy levels, where 
m* here is an orbital effective mass. The early calcula
tions by Titeica,20 Davy do v and Pomeranchuk,21 and 
Zilberman22 used an intuitive diffusion-like method. Al
though later calculations by density matrix methods23,24 

gave results that disagreed with these, a more rigorous 
density matrix calculation by Adams and Holstein25 

1 9 1 . M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor. 
Fiz. 29, 730 (1955) [English transl.: Soviet Phys.—JETP 2, 636 
(1956)]. 

20 S. Titeica, Ann. Physik 22, 129 (1935). 
2 1B. Davydov and I. Pomeranchuk, J. Phys. (USSR) 2, 147 

(1940). 
22 G. E. Zilberman, Zh. Eksperim. i Teor. Fiz. 29, 762 (1955) 

[English transl.: Soviet Phys.—JETP 2, 650 (1956)]. 
23 P. N. Argyres, Phys. Rev. 109, 1115 (1958). 
2 4 1 . M. Lifshitz, Phys. Chem. Solids 4, 11 (1958). 
25 E. N. Adams and T. D. Holstein, Phys. Chem. Solids 10, 254 

(1959). 
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(hereafter referred to as AH) justified Titeica's method. 
At present, a number of calculations by different 
methods26"30 also agree with Titeica's results. There is 
still some variation in the final formulas, however, de
pending upon the treatment of collision broadening25 

and the calculation of the transition probabilities.31 The 
AH formulation is the most complete and most easily 
compared with experiment. In Sec. IV we show that 
their formulas give a very good description of the 
oscillations. 

Although one might, in principle, apply the AH 
formulas to the total magnetoconductivity at all 
orientations, in this case there are considerable experi
mental and theoretical complications. Consequently, 
we applied the Landau relation to the magnetoresis-
tivity data as a function of orientation. This method 
was satisfactory because our principal interest was in 
the determination of the individual electron and hole 
periods. The relationship between the two methods of 
analysis was established at the orientation 0=0° . This 
arrangement allowed a determination of the orbital 
effective masses from the temperature and magnetic 
field dependences of the oscillatory amplitudes for all 
orientations. The variations of the effective mass with 
orientation could be qualitatively correlated with the 
period behavior. The results of this analysis are also 
given in Sec. I I I . 

Finally, the results are summarized and conclusions 
are presented in Sec. V. 

II. EXPERIMENTAL PROCEDURE 

The purified graphite single crystal used in this 
study, EP-14, was described previously.14 Also, the dc 
methods used in measuring the galvanomagnetic pro
perties were essentially the same and the current, 
usually about 1 mA except at the highest values of 0, 
was always directed along the basal plane perpendicular 
to the a axis. The usual magnetic field ranged from 4 to 
24 kG and the temperature range was extended from 
4.22 down to 1.22°K by pumping over the liquid helium 
with a Kinney KDH-130 pump. Mercury and octoil 
X'S" manometers were used for the vapor pressure de
termination and the error in the temperature was con
sidered to be ±0.01°K when operating below the lambda 
point. A Moseley X-Y recorder was employed to record 
the oscillatory curves, where the Y axis was propor
tional to the voltage drop due to the magnetoresistance 
VPJ or the Hall voltage VH, and the X axis was pro
portional to the magnetic field H, measured by a rotating 

26 R. Kubo, H. Hasegawa, and N. Hashitsume, J. Phys. Soc. 
Japan 14, 56 (1959). 

27 P. N. Argyres and L. M. Roth, Phys. Chem. Solids 12, 89 
(1959). 

28 P. N. Argyres, Phys. Rev. 117, 315 (1960). 
29 A. M. Kosevich and V. V. Andreev, Zh. Eksperim. i Teor. 

Fiz. 38, 882 (1960) [English transl.: Soviet Phys.—JETP 11, 637 
(I960)]. 

30 V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 38, 1304 (1960) 
[English transl: Soviet Phys.—JETP 11, 941 (I960)]. 

31 A. H. Kahn, Phys. Rev. 119, 1189 (1960). 

CRYSTAL 

BASAL PLANE 

[OlTO] 

FIG. 1. Relative orientation of crystallographic axes with re
spect to the magnetic field H and the current I. The transverse 
magnetic field rotation scheme consists of rotating H from a direc
tion parallel to [0001] to the direction [2110], keeping the 
aximuthal angle 0 = 90°; whereas in the transverse-to-longitudinal 
rotation scheme, H starts_ from the same initial position and ro
tates to the direction [0110], keeping <^=0°. 

coil fhixmeter. These axes were calibrated against a 
Leeds and Northrup K-2 potentiometer and proton 
resonance, respectively. During the course of the study, 
over 180 curves were recorded. 

The period as a function of orientation was studied by 
using two magnetic field rotation schemes (see Fig. 1). 
The first consists of rotating H from a direction parallel 
to the c axis [0001], to the current direction I [0110], 
keeping the azimuthal angle 0 = 0. This is called the 
transverse-to-longitudinal rotation scheme. Starting 
from the same initial direction in the second or trans
verse rotation scheme, H is rotated down to the a axis 
[2110], remaining always transverse keeping 0=90° . In 
this investigation, the emphasis was on the large varia
tion of the periods observed while rotating H through 
the angle 0. Of secondary interest was the variation ob
tained while rotating H azimuthally through the angle 
<t> about the c axis for a particular value of 0. This aspect 
will be discussed at more length in the next section. 

The mapping of the Fermi surface can be carried out 
with the magnetoresistance as with the susceptibility 
for although the nonoscillatory component depends on 
the rotation scheme, the oscillatory period is inde
pendent of the direction of I, depending only on the 
orientation of H with respect to the crystallographic 
axes. 

Locating accurately the position of 0=90° was im
portant in the process of running each set of orientation 
curves on the recorder. While previously the maximum 
of the magnetoresistance as a function of 0 occurring 
at 0° was used as the criterion for alignment of H parallel 
to the c axis, it was found that the minimum at 90° 
in the nonoscillatory component proved to be far 
superior, being extremely sharp at low temperatures. 
The precision error using this procedure could be kept 
<0.2°. The problem then remained to relate this ob
served minimum to the actual alignment of H with re
spect to the crystallographic axes for the Shubnikov-de 
Haas effect. This can be demonstrated by considering 
the two magnetic field rotation schemes used where, for 
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the purpose of a simplified initial example, isotropy will 
be assumed. For the transverse-to-longitudinal rotation 
scheme, the position of the effective minimum in the 
nonoscillatory longitudinal magnetoresistance is not 
necessarily exactly the same as the minimum observed 
in the period of the oscillatory component, since the 
former occurs at the nearest approach of H||I, whereas 
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FIG. 2. Typical direct X-Y recorder traces of the measured volt
age VP (proportional to the magnetoresistance) versus magnetic 
field at 4.22°K (curves a) and at 1.22°K (curves b) for various 
orientation angles 0 from 0 to 90°. The ordinate scale has been 
normalized for a current of 10 mA. 

the latter, being independent of the direction of I, 
occurs when H is actually parallel to the basal plane. 
As a result, for the isotropic case the overall alignment 
error for this rotation scheme would be <0.3°. How
ever, the high anisotropy of graphite reduces this error 
still further. In the transverse case, this error does not 
enter even in principle due to the fact that the non-
oscillatory magnetoresistance minimum occurs when H 
is parallel to the basal plane which is identical to the case 
of the oscillatory component. Accordingly, because of 
this factor and an additional advantage due to the 
geometrical restriction of the sample mount in the 
Dewar, the latter rotation scheme was used for most of 
the orientation studies. 

Another consideration, of course, is that with such a 
delicate crystal mounting, the Lorentz force might be 
sufficient to shift the crystal. This force would be of 
particular importance for the 0=90° case. However, 
not only is the maximum force about 25 dyn, but its 
direction is such as to shift the crystal toward or away 
from the quartz mounting plate rather than to apply an 
unwanted torque about the crystal's transverse or longi
tudinal axis resulting in an erroneous evaluation of 0. 
The proof of these statements lies in the behavior of the 
actual crystal in situo, which is considered further in 
Sec. III. 

One of the main problems in this study resulting from 
graphite's extreme anisotropy was the rapid decrease 
of the oscillatory amplitude as the crystal was rotated 
toward 6=90°. In fact, whether one could detect oscilla
tions at all at this orientation was a critical factor in 
determining whether the Fermi surface was open or 
closed. Consequently, though the oscillations could be 
detected down to about 83° by conventional means, an 
auxiliary method was required to extend the detecta-
bility from S3 to 90°. It was found that the magnetic 
field dependence of the Hall voltage of an InSb crystal 
placed in the magnetic field in close proximity to the 
graphite crystal and stabilized at ice temperature had a 
behavior similar to the low-temperature nonoscillatory 
magnetoresistance component of the graphite. This de
vice was then used as a bucking voltage source to com
pensate for almost all of the latter's nonoscillatory signal. 
The difference could then be amplified and presented on 
the recorder. By this means, the sensitivity could be en
hanced by at least two orders of magnitude and small 
voltage differences of < 10~7 V could be detected. With 
this arrangement, oscillations were seen at 6=90° with a 
signal-to-noise ratio of about 3:1. 

III. PERIOD AND AMPLITUDE 
ORIENTATION BEHAVIOR 

Typical magnetoresistance curves versus magnetic 
field are shown in Fig. 2. They were taken at orientation 
angles 6 from 0 to 90° and at temperatures of 4.22 and 
1.22°K. The increased amplitude and enhanced struc
ture of the oscillations at the lower temperature is 
clearly evident. Also, it will be noted that the amplitude 
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falls off rapidly with increasing 6. This fact is shown 
clearly in Fig. 3. This very strong dependence is due to 
graphite's extreme orbital mass anisotropy causing a 
sharp decrease in the thermal damping factor of Eq. 
(1.2). Experimentally, this condition posed a severe 
problem of detection at high values of 0, as discussed in 
the previous section. 

Another principal feature of the curves in Fig. 2 is 
the interference structure of two oscillatory terms, one 
due to majority electrons and the other to majority 
holes. Since the ratio of their periods is about f, the 
separation of terms is a tedious procedure.8 For this 
reason, and because we wanted to extract additional 
information, an IBM 7090 was programmed to make a 
least-squares fit of the experimental data to a "general
ized Landau relation." This formula gives for the oscil
latory term due to the ith carrier 

Gi{r)^EnY,Wi{r)^{ru%) 

Xexp(—\%r) cos[27irs4— ̂ (V)]> (3.1) 

where s^l/PiH, \i=uiATi/T=2Tr2kATi/AEi, and 
where u and 0 are defined by Eq. (1.2). The quantity 
AT is the effective change in temperature due to col
lision broadening32 given by 

AT=h/(<irkT0Oi), (3.2) 

where rcoi is the collision time. The formula coincides 
with the simple susceptibility theory3 if n=— J, 
Wi{r) = Wi(\)r-*l2 confirm*/m*) and ik ( r )= (r+f)ir . 
The generalization consists of letting n, the W's, and 

-30 -20 -K> 0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100 IK) 

6 IN DEGREES 

FIG. 3. Observed dependence of the oscillatory amplitude upon 
orientation at 1.24°K and 23 kG, normalized for a current of 
10 mA. The arrow at 0=55° represents the approximate limit of 
Shoenberg's observations. 

32 R. B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952). 

the \f/'s have arbitrary values. This formula then can 
approximately reproduce most of the results of the 
various theories of the Shubnikov-de Haas effect. The 
computer program represents the effects of two carriers, 
including the fundamental and first harmonic (r= 1,2) 
of each. For fixed n and AJT'S, the program varied the 
P's, m*'s, W's, and t/^s to obtain the least value of the 
weighted sum of squares of deviations between the 
theory and experiment. The manner in which the values 
of n and the AVs were chosen will be discussed later. 

One of the important practical problems in the fitting 
concerned the statistical weighting of the data. If Eq. 
(3.1) described the phenomena exactly, the deviations 
would be expected to be random; however, the best re
production of the positions of the maxima and minima 
was obtained when the average deviations were made 
proportional to the average amplitude of the oscillations. 

The least-squares analysis can be applied either to the 
oscillations in the measured resistivity or to those of 
the measured conductivity. For purposes of analysis, 
the latter is preferred, since it more closely approxi
mates the magnetoconductivity, for which the theory 
discussed in Sec. IV applies. The set of curves shown in 
Fig. 4(a) shows the oscillations in the resistivity for the 
transverse-to-longitudinal rotation scheme at 4.2°K. 
The shift to higher fields with increasing 6 of a particular 
"destructive interference region" is indicated by arrows. 
In Fig. 4(b) are shown the oscillations in the conduc
tivity for the transverse rotation scheme at 1.23°K, 
where the increased amplitude and structure of the 
oscillations are evident. Failure of the theory to fit 
these curves exactly is due mainly to the fact that the 
theoretical expression contains only two terms of the 
harmonic series, whereas more terms are important at 
the lower temperature. 

A second method for isolating the electron term in
volves an analysis of the "low-field" region.8 Equations 
(1.2) and (3.1) show that the oscillatory amplitude de
creases with decreasing magnetic field and with in
creasing effective mass. The hole mass is larger than the 
electron mass (about twice at 0=0°) , causing the rate 
of damping of its term with decreasing H to be greater 
than for the electron term. At a sufficiently low mag
netic field, only the electron term remains. Because of 
the increase of the effective masses with increasing 0, 
the upper limit of this "low-field" region progresses to 
higher fields, covering an ever larger portion of the ob
served field region, as seen in Fig. 4. Eventually at 
0>84°, only the electron term could be observed re
liably, although traces of interference structure were 
observed in some cases as high as 87°. A typical low-
field curve is given in Fig. 5 showing the single electron 
term. By observing just this "low-field" region, the 
electron period was also determined at lower values of 
0 and was found to be in agreement with the results of 
the least-squares analysis. The derived periods are 
within 1.7% throughout the region of comparison. 
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FIG. 4. Oscillatory components of the magnetoresistivity for the 
transverse-to-longitudinal magnetic field rotation scheme at 
4.2°K (curves a) and of the measured conductivity (inverse re
sistivity) for the transverse scheme at 1.2°K (curves b) for values 
of 0 from 0 to 75°. The voltages (proportional to the resistivity) 
are normalized for a current of 10 mA. The solid curves are fitted 
by least-squares using the Landau relation Eq. (3.1). 

The over-all orientation behaviors of the individual 
electron and hole periods are shown in Fig. 6. Data for 
both rotation schemes and for eight temperatures 

between 1.2 and 4.2°K are included. Also, a comparison 
is made between the least-squares value and those found 
by the "low-field" method. This figure demonstrates the 
extreme anisotropy of graphite where, for instance, the 
electron period drops from (2.07±0.04)X10-5 G"1 at 
0=0° to (0.15±0.03)X10-5 G"1 at 90°. The very exis
tence of an oscillatory term for H in the basal plane 
(electron orbit in a plane containing the c axis) proves 
that the electron Fermi surface is closed. On the other 
hand, since the hole period which at 0=0° is (1.51±0.03) 
X 10~5 G - 1 was not observed at 90°, we cannot make so 
strong a statement about the hole Fermi surface. How
ever, it will be shown below that it also is closed. 

A. Electron Fermi Surface 

I t is possible to analyze the shape of the Fermi sur
faces in some detail since the relative period values are 
of sufficient precision. The electron Fermi surface to a 
first approximation is an ellipsoid of revolution about 
thee axis. To determine the electron anisotropy ratio X\ 
for the best ellipsoid, the measured P\{6) values in the 
range between 80 and 100° were used. For each Pi(0), 
a Xi was calculated giving an average electron Fermi 
surface anisotropy of Xi=12.1±1.4 , predicting a most 
probable electron period at d=90° of (0.17±0.02) X 10~5 

G~x. The solid curve in Fig. 6 is for a true ellipsoidal 
Fermi surface with this anisotropy. To show this fit 
more clearly, the deviation from the true ellipsoid is 

4.0 4.4 4.8 5.2 5.6 

I 0 5 / H IN GAUSS"I 

FIG. 5. Low-field oscillatory component of the magnetoresistance 
versus inverse magnetic field at 0 = 83.1° and T = 1.25°K, normal
ized for a current of 10 mA. The integer plot is linear showing the 
absence of the hole term and gives a value of 3.04db0.07X10~6 

G_1 for the electron period at this angle. 
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given at the top of Fig. 7, showing it to be within ± 3 % 
over most of the range. Although there appears to be a 
slight "dumbbell-like" protrusion (^2.5%) occurring 
at 6 between 25 and 60°, its reality is doubtful consider
ing the scatter of points, as well as being a negligible 
effect on this highly elongated surface. Around 90°, the 
scatter is considerably larger (~10%) precluding any 
reliable statement about the exact shape of the actual 
electron Fermi surface tip. 

The variation of the Fermi surface shape about the 
c axis was very difficult to resolve since the period be
havior of these highly elongated surfaces approximates 
the cylindrical behavior A cos# regardless of the 
azimuthal angle <t> and the shape of the cross section of 
the cylinder A, To obtain an approximate idea of the 
behavior of the period due to trigonal anisotropy, let 
us consider a rough model of the Fermi surface consisting 
of two pyramids with equilateral triangular bases 
placed back-to-back. The altitudes of the pyramids are 
parallel to the c axis and are ten times the length of a 
side of the base. The a axes are perpendicular to the 
base sides. The difference in the maximum cross sections 
cut by planes having perpendicular rotation axes cor-
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FIG. 6. Over-all dependence of the electron and hole periods upon 
orientation from 0= — 30 to +113° for data taken in the range 
1.2 to 4.2°K. Results from the transverse (open points) and the 
transverse-to-longitudinal (closed points) magnetic field rotation 
schemes are shown. These are subdivided into the results obtained 
from the least-squares and the low-field analyses. The solid curves 
represent the behavior of a Fermi surface having a true ellipsoidal 
shape with an anisotropy ratio of X= 12.1. The dashed extrapola
tion of the hole curve from 0 = 85 to 95° represents the behavior 
that would be expected for a hole surface with the extended conical 
tips (as shown in Fig. 8), and having an anisotropy ratio of 17.3. 
The error limits, for the sake of clarity, are shown only in certain 
representative regions; that is, the neighborhood of 0 = 90, at 55, 
and at 0°. 
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FIG. 7. Deviations of the electron and hole Fermi surfaces from 
a cylindrical surface shape (two lower curves) and the deviation 
of the electron Fermi surface from a true ellipsoidal surface shape 
having an anisotropy ratio of 12.1 (upper curve). The deviation 
from a cylinder is represented by P;(0) cos0/P;(0), where the Pi 
are measured periods for the ith. type carrier. The curves represent 
the behavior of an ellipsoidal Fermi surface having an anisotropy 
ratio of X=12.1 (solid curve) and X=15 (dashed curve). The 
deviation of the electron surface from an ellipsoid is given by 
Pi(O)/P!(0)f where f=[cos 2 0+Xr 2 sin^]"1/2, the normalized 
radius vector to the ellipsoidal surface. The open points are indi
vidual measured values, whereas the closed points represent an 
average of 3 to 7 measured values. 

responding to the transverse and transverse-to-longi
tudinal rotation schemes used experimentally is 2.5% at 
0=60°, 6.5% at 80°, and 14% at 90°. The observed 
period values for the two rotation schemes agreed to 
within ^ 1 % , relatively independent of 0, over the 
range for which they were compared, that is, out to 
81° for the electron term and to 66° for the hole term. 
These results, then, would allow a small degree of 
trigonality, but somewhat less than that of the above 
extreme model. 

Although the actual shape of the electron Fermi sur
face may differ some from the true ellipsoidal model, its 
volume should be very nearly equal to that of the 
ellipsoid. The carrier concentration N contained in the 
Fermi surfaces is then related to the observed oscillatory 
period by 

iV(osc)= (ir/3)(4e/>irhcy?2XQP(0y (3.3) 

where Q is the number of Fermi surfaces contained in 
the Brillouin zone. Previous results14,17 obtained using 
the nonoscillatory galvanomagnetic data on the same 
sample studied here gave an average value for the elec-
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tron concentration of Ari(nonosc)= (3.0±0.3)X1018 

^~3. If a value of Q = 4 is chosen, then from Eq. (3.3), 
cm-

cm 
iVi(osc)=(2.90=b0.35)Xl018 c n r l Such good agree
ment is experimental proof that there are four electron 
Fermi surfaces of each spin in the Brillouin zone. This 
result agrees with the theoretical result predicted by the 
parameterized SW model.10 

B. Hole Fermi Surface 

Although the hole oscillatory term could not be ob
served reliably for 6 larger than 84°, its Fermi surface 
can be shown to be closed by the following arguments. 
The lower curves in Fig. 7 show the deviation of both 
the electron and hole surfaces from a cylinder. The ratio 
P2(0) cos0/P2(0) emphasizes the strong deviation of the 
surface inward, indicating that the hole Fermi surface 
is closed. In addition, the SW group-theoretical treat
ment predicts that if the electron surface is closed, the 
hole surface must also be closed. 

As seen in Fig. 7, the hole period behavior can be 
fitted fairly well over the range it was measured by an 
ellipsoidal Fermi surface with an anisotropy ratio of 12, 
essentially the same as the electron surface. In fact, the 
ratio P2/P1 is remarkably constant33 (0.730) with in
creasing 6. In addition, assuming that the electron and 
hole Fermi surfaces just fit into the Brillouin zone, the 
predicted hole surface anisotropy would be 12.3. Al
though this agreement seems plausible and supports pre
vious theoretical estimates10 of the Fermi surface sizes, 
the calculated value for N2(osc) from Eq. (3.3), using 
the theoretical values of Q = 2 , is 2.2X1018 cm - 3 ; well 
below the previously determined14'17 value of A^fnonosc) 
= (2.8±0.3)X1018 cm~3. A discussion for the validity 
of assuming that there are two surfaces rather than three 
in the zone will be presented in Sec. V. 

Since the actual period data cover only about 60% of 
the length of the hole Fermi surface, there is a reasonable 
latitude for adjustment of the shape of the ends. And, 
in view of the good agreement between the two types 
of carrier densities found for electrons, we have con
fidence in the nonoscillatory value for holes. Thus, the 
reverse procedure is taken starting by equating 7V2(osc) 
to Ar

2(nonosc). A simple ellipsoidal surface satisfying 
this requirement would have an anisotropy ratio of 15. 
However, as shown in Fig. 7, the curve based on this 
anisotropy lies well outside of the observed points. 

A composite model for the hole Fermi surface that 
overcomes the above difficulties to a large degree is one 
whose central section fits the 12.1 to 1 ellipsoid out to 
about 85° and which has a projection along kz to accom
modate the additional volume. A simple conical pro
jection is considered that extends tangentially from the 
ellipsoid surface at 85°. This model gives a value of 
iV2(osc) = 2.4X!018 cm -3, reducing the discrepancy 

I2.|:|-

— 173:1 

12.1:1 

ELECTRON 

K' 

1/ 
HOLE 

9-85° 

33 In the present work each period was determined independ
ently. In previous work (Refs. 6 and 8), Fourier analysis gave a 
simple period ratio of f. 

FIG. 8. Individual electron and hole Fermi surfaces determined 
from the 6 variation. The electron surface has been completely 
determined experimentally while the hole surface has been de
termined experimentally to 0^85 °. At 85° the proposed conical 
tip joins tangentially the 12.1:1 ellipsoid (dashed curve) to give 
an overall anisotropy ratio of 17.3. These surfaces are drawn to 
scale with the dimension along kz equal to 29.3 X106 cm""1 for the 
electron surface and 49.2X106 cm -1 for the hole surface. The elec
tron surface is centered at K' and the hole surface at K as shown 
in Fig. 13. Though the surfaces are drawn as figures of rotation 
about kz with maximum radii r\ and r2, the possibility of a small 
amount of trigonal asymmetry is discussed in the text. 

with the iV^tnonosc) value to 14%, which may be reason
able in the light of all of the uncertainties. This hole 
surface has an anisotropy ratio of 17.3. Such a model 
resembles that predicted by theoretical calculations 
having an almost "diamond-shaped" Fermi surface.34 

I t is worth pointing out that the theory predicts that the 
departure from rotational symmetry about the c axis 
is greater for the hole than for the electron surface and 
this fact should have a bearing on these shape and 
volume determinations. The individual derived Fermi 
surfaces are shown in Fig. 8, where they are drawn to 
scale to demonstrate the extreme anisotropics involved. 

C. Orbital Masses 

The computer results give effective orbital masses 
determined from fitting the magnetic field dependence 
of the amplitude of the oscillations at a fixed tempera
ture; called the "field dependence effective masses." 
Since it is assumed throughout, of course, that AT is in
dependent of temperature,35 the correct values of AT 

34 See Fig. 3 of D. E. Soule and J. W. McClure, Phys. Chem. 
Solids 8, 29 (1959). 

35 The zero-field resistivity (6X10 -7 ohm-cm) is independent of 
temperature from 1.2 to 4.2°K. 
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for each carrier are those for which the "field depend
ence effective masses" are also temperature-independ
ent. Actually, there was a scatter in the effective mass 
values found (5*15%), so that the AT values were de
termined by the requirement that there be no systematic 
change of these masses with temperature. The AT values 
obtained are 0.8°K for electrons and 0.6°K for holes 
at all values of 6 that were analyzed. Although these AT 
values depend on the choice of n, discussed in the next 
section, the effective mass values are rather insensitive 
to n. 

An alternative method for finding the effective mass 
uses the temperature dependence of the amplitude; 
called the "temperature dependence effective mass." 
The effects of the two types of carriers had to be separ
ated first by calculating the amplitude of the funda
mental due to each carrier at each temperature. The 
magnetic field value was chosen in the middle of the 
range; for, even if the field dependence of the amplitude 
were incorrect, the average amplitude had to be nearly 
correct in order to reproduce the experimental curves. 
I t is this fact which makes the "temperature depend
ence effective mass" more reliable than the "field de-
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FIG. 9. Electron and hole effective orbital mass determinations 
from the temperature dependence of the amplitude. The ordinate 
is the amplitude of the fundamental oscillation in the inverse 
magnetoresistivity, divided by the absolute temperature, for a 
magnetic field of 11.1 kG parallel to the c axis. At each tempera
ture, the points for each carrier were obtained from Wi(l)/sinh(ui), 
Ui — 2Tr2kTnii*c/heH, where Wi(l) and mf are the parameters for 
the best fit of the field-dependent data at that temperature. The field-
dependent fits were to Eq. (3.1) with » = —1.2, and AZ\ = 0.8°K 
and Ar2 = 0.6°K. The curves are given by Wi/smh(ui), but with 
the temperature-independent values of W% and mi* adjusted to 
give the best fit to the points. The best values of the effective or
bital masses are indicated on the graph. The uncertainties given 
for the mass values represent the range of values for which a curve 
of the type used could give a reasonable fit to the points. 
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FIG. 10. Dependence on orientation of the effective orbital 
masses for electrons and holes, determined by two methods. The 
open symbols denote the "temperature dependence masses," 
determined as explained in Fig. 9. The solid symbols denote the 
average values for the "field dependence masses'' determined by 
least-squares at various temperatures. The error limits represent 
the mean-square deviations. The values n=—1.5, AZ,

1 = 0.8°K 
and AT2 = 0.6°K were used in the least-squares curve fits. The point 
at 83.1° was determined directly from the field dependence of the 
amplitude of the curve in Fig. 5. The dashed curves represent the 
orientation dependence of the orbital masses for a cylindrical 
Fermi surface parallel to the hexagonal axis. Up to 0=75°, the 
curves deviate less than 5% from those for an ellipsoid with an 
anisotropy ratio of 12. The square symbol at 0 = 90° indicates the 
value of the electron cyclotron mass rac* predicted from the mass 
at 0=0° and the 12.1 anisotropy ratio. 

pendence effective mass." Figure 9 shows a typical plot 
of the amplitude for the electron and hole terms versus 
temperature at 0=0° . 

Both types of effective masses as a function of orien
tation are shown in Fig. 10, where the points determined 
by the two methods agree to about 9% for electrons and 
5 % for holes. The dashed curves represent the behavior 
of the effective mass for a cylindrical Fermi surface 
which does not differ for 0<7O° from that for an ellip
soid with an anisotropy of 12 by more than the effective 
mass error. With the assumption that the Fermi sur
faces are true ellipsoids having energies quadratic in 
wave number, the cyclotron mass becomes identical 
to the orbital mass observed here and so mn*/%* = X2 

and m?= ( w n W ) 1 / 2 , where w,,* and m^ are the effec
tive masses parallel and perpendicular to the c axis and 
m* is the cyclotron effective mass for the case where 
the magnetic field is perpendicular to the c axis. We 
find w n * = 5.7wo and Wc* = 0.47wo for electrons and 
Wu*« 14m0 and w c*~0.9w0 for holes. The value of rn? 
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for electrons has also been plotted in Fig. 10, where an 
extrapolation to the lower curve seems reasonable. 

IV. COMPARISON WITH THEORY 

In this section, the AH theory25 will be compared with 
the experimental results for the magnetoconductivity 
with the magnetic field parallel to the c axis (0=0°). The 
relation will then be established to the generalized 
Landau formula, which was used to analyze the mag-
netoresistivity at all orientations. 

A. Adams-Holstein Theory 

The results of AH apply to a simple electron-gas 
model in the high magnetic field limit. In this case, a 
high magnetic field is one for which cor̂ >>l, where 
co = eH/ni*c is the cyclotron resonance frequency and r 
is the relaxation time. Furthermore, we use the results 
of AH for point-impurity scattering (i.e., the potential 
of each scattering center is given by a Dirac delta func
tion). We shall discuss the validity of these approxima
tions below. The diagonal magnetoconductivity is given 
by AH as 

o-ci+AovfAc^. (4.1) 

The quantity crcl is the classical high-field magneto
conductivity and is inversely proportional to the square 
of the magnetic field. This quantity is expressed as 
<rci = Ae2/m*co2rav, where rav is the average relaxation 
time, which does not depend upon the magnetic field. 
The Ao"i and Ao-2 are quantum corrections which de
scribe the Shubnikov-de Haas oscillations. As Adams 
and Holstein point out, Aai is due to transitions between 
the Landau level nearest the Fermi level and all other 
Landau levels, whereas Acr2 is due to transitions within 
the Landau level nearest the Fermi level. Except at very 
high magnetic field strengths, Aoi dominates. In writing 
expressions for these quantities, it is useful to define a 
periodic "saw-tooth" function 8, 

5 = L+±-s, 0 < 5 < 1 , (4.2) 

where s=l/PH, and L is the largest integer which is 
less than or equal to s~ ^. For the absolute zero of tem
perature and no collision broadening, AH find to a very 
good approximation if s > § : 

A ^ d ^ W ? , (4.3a) 

A ^ d ) ^ 1 ^ 2 , (4.3b) 

F==id-U2_(d+iyi2t ( 4 J c ) 

Note that F is a periodic function of s. 
The effect of temperature is easily introduced if the 

o-'s are expressed as a harmonic series, by multiplying 
each term in the series by the factor Q. The Fourier 
series for F is readily found, but that for F2 does not 
exist, due to the 5 - 1 singularity. In order to circumvent 
this difficulty, AH introduced collision broadening. The 
result of broadening F with a simple Lorentz function 

is given by 

F= £) (2f)-1^-^cos(27rf5-i7r)fi(f^), (4.4) 
r = l 

where X and u are the same as in Eq. (3.1). One may 
also write \=27r/WCoi. The coefficient (2r)~112 may be 
found by performing a Fourier series expansion of Eq. 
(4.3c), neglecting contributions less than about two 
percent of the coefficient. I t has been obtained before 
by using the Poisson summation formula.25 In the 
latter method, the coefficients are Fresnel integrals with 
upper limits depending upon s. To obtain Eq. (4.4), 
one must extend the upper limit to infinity. This con
dition appears to imply that Eq. (4.4) is good only for 
large s; but if one uses the asymptotic formulas for the 
Fresnel integrals, cancellations are found so that the 
error in (4.4) is less than 2% for s greater than f. The 
result also implies that the Landau formula for the 
susceptibility3 is good for s > § (i.e., for magnetic fields 
up to that of the last extremum), a fact which has pre
viously been noted experimentally.36 Equation (4.4) 
agrees with AH, except for an error of a factor of two 
in their paper. I t also agrees with the result of 
Zilberman22 (who gave only the first term in the series), 
with that of Skobov,30 and with that of Kahn31 (except 
for a multiplicative factor). 

We treat Aa2 differently than AH, who applied col
lision broadening to F2 and then found an approximate 
harmonic series. An examination of the theory leads us 
to believe that the density of states should be broadened 
prior to working out the conductivity. In the present 
case, this means that one should broaden F and then 
square the result. To reduce the square of Eq. (4.4) to 
a single harmonic series, it is necessary to perform some 
intermediate sums. We obtained approximate formulas 
for these sums by using the Euler-Maclarin sum 
formula.37 We then adjust the constants in the formulas 
to obtain good agreement with a selection of exact 
values which were found numerically. The approximate 
result is 

F2^M+ f: e-^lCr sm27rrd+Dr cos2xr5]0(ru), (4.5a) 

j | f = - l l n ( l - < r * x ) , (4.5b) 

Ci = 0, C^U-irSr-1'2), r>l, (4.5c) 

e-^\a+b\/(c+\) 

2 I (1+r)1 '2 

r ( 1 + r + l/2X)1/2+ (1+1/2X)1/2-! ] 

36 J. S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc. London 
A248, 1 (1955). 

37 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam
bridge University Press, Cambridge, 1950), 4th ed., p. 127. 
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where a=0.230, £=0.770, and c=0.763. Formula (4.5d) 
holds for X greater than about 0.2, which is adequate for 
the present case. With the correction of an error of a 
factor four, the AH result for the sine series is C r=7r/4 
for all r. Our result for the cosine series is completely 
different from theirs. For a value of 0.25 for X (which is 
about as small as that attained in the present data), Di 
is equal to 0.35. For this value of X and the smallest 
value of s in the present data (about 2.5), the ratio of 
the amplitude of the fundamental term in A<r2 to that in 
Ao-i is about 0.1. Thus, A<r2 is not very important, es
pecially for lower magnetic field strengths. 

A set of sample theoretical curves are exhibited in 
Fig. 11. The curve for the case T = AT=0 was calculated 
using Eqs. (4.3). The other curves were calculated by an 
LGP-30 electronic computer, using Eqs. (4.4) and (4.5). 
At each point, enough harmonics (the greatest number 
used was 14) were taken to give an accuracy of 0.02. 
Note that the peaks are extremely sharp and that the 
minima are more rounded. Note also that as the tem
perature decreases, the curves calculated from the har
monic series expansion approach the curve calculated 
from the simple formula (4.3c). The effect of the mono-
tonic term M is interesting. If AT is small, M represents 
a quantum effect which is present even when the tem
perature is so high that the oscillations have damped 
out. 

B. Validity of the Theory for Graphite 

We now examine the validity of applying these for
mulas to graphite. First we shall see if the condition 
COT^>1 is obeyed. Analysis17 of nonoscillatory data14 on 
the same sample indicates that cor is about equal to 100 
at 20 kG. However, the AH theory gives a r which 
oscillates as a function of magnetic field and, in the 
absence of collision broadening, is equal to zero at 
points where 6=0. Near these points one may write 
r ^ r a v ( 2 ^ ) 1 / 2 , where ra v is the value appropriate to the 
nonoscillatory phenomena (mobility, etc.). Following 
AH, we estimate the effect of collision broadening by re
placing d with (cor)-1 in the above equation. This pro
cedure gives an equation which can be solved for r, 
yielding 

cormin^wrav(2s/corav)1/3. (4.6) 

From (4.6) we estimate that the minimum cor at 20 kG 
is about 37, and that at 5 kG, it is about 23. Thus, we 
see that the high-field approximation is adequate for the 
data reported here. 

In our analysis we have treated rcoi as a constant, and 
have chosen its value to obtain the best fit to the ex
perimental data. In the present data, which exhibits 
sharp peaks, the most important effect of the collision 
broadening is the reduction in amplitude of the peaks. 
Thus, the value of rcoi should be characteristic of the 
peaks, that is, it should be nearly equal to rm i n . The 
estimate given in the previous paragraph implies that 
the value of AT which gives the best fit to the present 
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FIG. 11. Diagonal magnetoconductivity, calculated from the 
Adams-Holstein theory, as a function of inverse magnetic field 
strength. The solid curves are for temperatures of 1.26, 4.22, 
10, and 20°K where the amplitude of oscillation decreases with 
increasing temperature. The dashed curve represents the un-
broadened conductivity (T = AT = 0), which has infinite singulari
ties. The curves were calculated for one carrier with the following 
parameters: P = 2X10~6 G-1, m* = 0.04m0, and (except for the 
dashed curve) A r = 0.1°K. 

data may be as much as three times the value estimated 
using a rav obtained from the measured mobility. On the 
other hand, the peaks in the oscillatory susceptibility 
(de Haas-van Alphen effect) are not so sharp as those 
in the conductivity. The harmonic amplitudes in the 
susceptibility formula [see Eq. (3.1)] are proportional 
to f~3/2, while those in the magnetoconductivity are 
proportional to r~~1/2 [see Eqs. (4.3) and (4.4)], which 
means that there are no singularities in the suscepti
bility even in the absence of collision broadening at 
absolute zero. Therefore, the value of rcoi which gives 
the best fit to the de Haas-van Alphen data should be 
closer to rav. This is in agreement with the experi
mental results, discussed below, where the value of 
AT [see Eq. (3.2)] found from Shubnikov-de Haas data 
is larger than the value found from de Haas-van Alphen 
data on the same sample. 

We have neglected the variation with magnetic field 
of the Fermi level, the value of which is determined by 
the condition that the total number of electrons (or the 
number of electrons minus the number of holes) re
mains constant. Kahn and Frederikse7 have calculated 
the change of the Fermi level at absolute zero for a 
single-carrier model. In Table I we give the location of 
the singularities in the density of states (which cor
respond to the singularities in the conductivity), accord
ing to their model. I t is seen that the deviations from the 
ideal case (constant Fermi level) are appreciable. Two 
effects tend to reduce the variation in the present case: 
the simultaneous presence of electrons and holes, and 
the thermal damping. If the electrons and holes had 
identical effective mass tensors, and if their numbers 
were equal, the Fermi level would not change with 
magnetic field. Since the present case is not so sym-
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TABLE I. Calculated positions of the singularities in the con
ductivity for simple models, taking into account the dependence 
of the Fermi level upon the magnetic field strength. The cal
culations are for a temperature of absolute zero and no colli
sion broadening. The one-carrier results are from Kahn and 
Frederikse (Ref. 7). The two-carrier results are for twice as 
many electron (carrier 1) ellipsoids as hole (carrier 2) ellipsoids, for 
2[>n*(l)M,*(2)]1 /2 = f, and for *»i*( l )M*(2)=i , so that 
P i / P 2 = i 

idex 
L 

1 
2 
3 
4 
5 
6 

Ideal 
1/PH 

1.5 
2.5 
3.5 
4.5 
5.5 
6.5 

One-carrier 
1/PH 

1.31 
2.36 
3.38 
4.40 
5.41 
6.41 

Two-
1/PiH 

1.39 
2.43 
3.45 
4.43 
5.46 
6.46 

•carrier 
I/P2B 

1.36 
2.39 
3.45 
4.50 
5.44 
6.43 

metric, we have calculated the positions of the singu
larities for a simple model in which the number of 
ellipsoids and the effective masses are approximately 
the same as in graphite, and in which the number of 
electrons and holes are equal. These results are also 
given in Table I. Note that the deviation from the ideal 
case is less than for the one-carrier model. The lowest 
quantum number peak we observe is the L—2 one for 
electrons, which is shifted about 3% from the ideal 
position. The effect of the finite temperature also re
duces the Fermi level variation, so that the deviations 
in the actual experiment are of the order of, or less than, 
the experimental uncertainties. 

As we have seen in the previous section, the energy 
band structure of graphite is very different from that of 
a free-electron gas with an isotropic effective mass. A 
fairly good approximation is a free-electron gas with an 
anisotropic effective mass: mu parallel to the c axis and 
mL perpendicular to the c axis. The formulas given 
above would still apply when the magnetic field is 
parallel to the c axis; the only effect of the anisotropy 
would be to change the magnitudes of r, N, and <rci. 
The anisotropy can have an effect on the shape of the 
oscillations for scattering potentials which have a finite 
range, as will be discussed below. As Adams and Keyes38 

point out, deviations from the effective mass model may 
be taken into account using the method of Lifshitz 
and Kosevich.19 As far as fitting the data is concerned, 
the only change due to the latter effect would be to 
make the phase of the oscillations adjustable. 

Another shortcoming of the formulas which we use is 
that they were derived for delta-function-potential 
scattering centers. The scattering potential actually has 
a finite range: That estimated for graphite by the 
Thomas-Fermi method39 is 6A (the screening is isotropic 
in this approximation). This means that the scattering 
probability is reduced for changes of wave vector greater 

38 E. N. Adams and R. W. Keyes, Progress in Semiconductors 
(Heywood and Company Ltd., London, 1962) Vol. VI, p. 85. 

39 N. H. March, Advan. Phys. 6, 1 (1957). 

than about 0.2 of the Brillouin zone height. The case of 
scattering by screened Coulomb potentials was treated 
by AH for the electron gas model, but they did not carry 
the calculation through to formulas which can be used 
to fit experimental data. They concluded that the effect 
of introducing the finite range of the potential increases 
the strength of the 5-1 singularity relative to the 5~1/2 

singularity. We have carried out detailed calculations 
for the anisotropic effective mass model with screened 
Coulomb scattering (the anisotropy simplifies the cal
culation) for a temperature of absolute zero and with 
no collision broadening. We find that the calculated 
Vxx/<r<i\ is very nearly the same as for the delta-function-
potential case, except that the peaks are stronger. This 
result is in substantial agreement with AH. Since the 
temperature damping affects the peaks most strongly, 
the curves for the two cases should have the same shape 
except at very low temperatures. We have neglected 
the change of the range of the scattering potential as a 
function of the magnetic field strength, an effect which 
is very important in the extreme quantum limit and 
one which may also be important in the oscillatory 
range. 

The AH theory treats the scattering in the Born 
approximation. Recently, Kahn31 and Skobov30 have 
treated the scattering exactly for the point scattering 
center. Their results indicate that the strong singulari
ties in A(72 are removed without resorting to collision 
broadening. Whether their formulation or that of AH 
is the most appropriate depends upon the strength of 
the collision broadening. We have not used their formu
lation, even though rough calculations indicate that we 
should, for two reasons: We wished to avoid the added 
complications in the analysis; and, since they have the 
same result as AH for Acn, we believe that the results 
will not differ very much for the present data. 

C. Comparison with Experiment 

In order to compare the theory with the experimental 
results, we have calculated the experimental magneto-
conductivity40 axx=a/£l-\-(RaH)22 from the con
ductivity a and the Hall coefficient R, measured on the 
present sample at 1.26 and 4.22°K. The simple formula 
just given applies only when the magnetic field is 
parallel to the c axis (0=0°). Because of the fact that the 
contributions of the nearly equal numbers of electrons 
and holes cancel in pure graphite, the Hall coefficient is 
very small. Thus, the factor RaH is small and crxx is al
most equal to a, a result which we shall use later to 
simplify the analysis. This condition is in contrast to 
the one-carrier case (the only one explicitly considered 
by AH), in which RaH is very large, and axx is inversely 
proportional to a. In Fig. 12 we plot the experimental 
values of H2axx against 1/H for two temperatures, 1.26 
and 4.22°K. The quantity IPaxx would be a constant at 

40 J. M. Ziman, Electrons and Phonons (Oxford University Press, 
Oxford, 1960), pp. 487-494. 
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I O V H IN GAUSS"1 

FIG. 12. Comparison of experimental and theoretical diagonal 
magnetoconductivities for the magnetic field parallel to the hex
agonal axis at 4.22 and 1.26°K. The points represent the experi
mental data. The oscillating curves represent a linear combina
tion of the Adams-Holstein theory and an empirical correction 
(same for both temperatures) represented by the monotonic solid 
curve. The parameter values in the Adams-Holstein calculations 
were chosen to give the best fit; the values are given in the text. 
The empirical correction is approximated by the function 
64/(105/#)2 which is plotted as the dashed curve. This correction 
function corresponds to a constant term in <rXx of 6.4X1013 cgs 
units, which is 0.004% of the zero-field value of <TXX. 

high magnetic field strengths if the behavior were classi
cal. However, the actual curves differ from the classical 
behavior in two ways: There are oscillations; and the 
mid-line of the oscillations monotonically increases with 
increasing magnetic field strength (decreasing 1/H). 
The latter effect is not contained in the AH theory; we 
represent it empirically by a monotonic function which 
approaches zero for small magnetic field strengths. The 
empirical function, which is shown in Fig. 12, will be 
discussed later in this section. 

The corrected curve (which we may think of as the 
classical part plus the oscillations) was fitted with a 
linear combination of two theoretical functions (to rep
resent the contributions of electrons and holes): 

theo 

= 5Kr[ M ( l ) /c ro i ( l ) ]+5 2 [^ (2) / ( r 0 i (2 ) ] , (4.7) 

where the indices 1 and 2 refer to electrons and holes, 
respectively, and axx(l)/o-c\(l) stands for the AH ex
pression for the ratio of the actual to the classical mag-
netoconductivity as a function of 1/H with the param
eters Pi , m*i, and ATX. A large number of curves for 
different values of the eight adjustable parameters 
(B, P , tri*, and AT for each carrier) were calculated and 
plotted by the computer. The best curves are plotted in 
Fig. 12 for the parameter values given below. Since the 
agreement between theory and experiment is not per
fect, the selection of the "best" curves involves some 
subjective judgment. We concentrated upon the oscil
lations, attempting to reproduce the positions and rela

tive amplitudes of maxima and minima and to obtain 
the correct dependence of over-all amplitude upon mag
netic field and temperature. As might be expected, the 
values of the periods can be determined most accurately, 
a change of 10~7 G"1 in either period causing noticeable 
deviations from the experimental results. The uncer
tainties in the best values for the masses are about 5 % 
and those in the AP's and B'$ are about 10%. These 
estimates are made on the assumption that the theoreti
cal formula is exact; a change in the formula may cause 
parameter changes greater than these estimates. 

I t is seen that the agreement between the theoretical 
curves and the experimental results is very good. I t is 
to be emphasized that the same parameter values are 
used at the two temperatures. I t is also important to 
note that the AH theory gives the correct ratio of the 
amplitude of the oscillations to the low-field (say 15 kG) 
average magneto conductivity. This fact alone would 
serve to confirm the AH theory, for the theories which 
disagreed with AH predict a much smaller amplitude of 
oscillation. Furthermore, we see that the shapes of the 
oscillations are reproduced remarkably well by the 
theory. 

The most serious discrepancy is the monotonic in
crease in the mid-line with increasing magnetic field 
strength. The empirical correction functions used in 
Fig. 12 is approximately proportional to (1/H)~2, which 
corresponds to a constant term in <rxx. This effect was 
noticed in an earlier work,17 where a few possible ex
planations were proposed. Another possibility is the 
variation of the range of the scattering potential with 
magnetic field strength. I t has been shown41 that tak
ing this variation into account explains the fact that axx 

is proportional to 1/H in the extreme quantum limit 
( s « f ) . The quantity H2axx is then proportional to 
{1/H)~l in the quantum limit. I t would be interesting 
to extend the calculation into the oscillatory region to 
see if it could explain the mid-line drift. 

The parameter values found from the fit to the AH 
theory are quite reasonable. The values found for the 
periods are 2.02 X10~5 G"1 and 1.47X10"5 G"1. These 
values differ somewhat from the results discussed in 
Sec. I l l , mainly due to a small calibration error which 
was discovered after the AH calculations were com
pleted. The effective mass values found are 0.040wo for 
electrons and 0.058mo for holes. A comparison of the 
effective mass values from several sources will be made 
below. The values of Bx and B2 are 0.66X1022 and 
1.10X1022 cgs units, compared with 0.75X1022 and 
0.60X 1022 from the nonoscillatory analysis.17 Although 
the agreement in the latter is not very close, there are 
many effects associated with the complexity of the band 
structure and the scattering mechanism which could 
account for the discrepancy. 

We wish to give special attention to the values of the 
collision broadening parameters found, Ar i=0 .80°K 

41 J. W. McClure, Bull. Am. Phys. Soc. 7, 214 (1962). 



A466 SOULE, M c C L U R E , A N D SMITH 

and Ar2=0.56°K. These values are in good accord with 
those found in Sec. I I I . The values of AT calculated 
using the nonoscillatory r a v in the place of rcol are 0.17° 
and 0.07 °K, which are smaller than the values found 
here from curve-fitting by factors of five and eight, re
spectively. We saw above that rcol should be less than 
Tav (by about a factor three at 20 kG). This result is in 
the right direction to explain the discrepancy, but there 
is still not good quantitative agreement. However, the 
calculation of rcol from r a v was very approximate. Also, 
there is a distribution of relaxation times present even 
in the absence of a magnetic field, so that one should 
actually use the relaxation time for the states near the 
bulge of the Fermi surface for rav- Recent work by 
Bychkov42 indicates that the effect of collision broaden
ing on the de Haas-van Alphen effect is very complicated 
when cor is greater than s and when 8 is of the order of 
(cor)-1, which is the case in the present work. In view 
of all these uncertainties, we feel that the agreement is 
not unsatisfactory, but believe that more theoretical 
work is desirable. I t is worth pointing out that the agree
ment between the two methods of obtaining AT is 
much better for certain semiconductors which have 
spherical Fermi surfaces, and in which cor is smaller than 
that for the present sample.88 

The prediction that the AT values found from fitting 
Shubnikov-de Haas data are considerably larger than 
those found from fitting de Haas-van Alphen data is in 
agreement with the experimental facts. For a direct 
comparison, both the magnetoresistance and the sus
ceptibility were measured on the same crystal by Berlin-
court and Steele.43 We have analyzed both sets of data. 

TABLE II. Comparison of AT, the effective temperature shift due 
to collision broadening, from various sources. 

Electron Hole 
Source Method of determination A7\ AT2 

Present work Fitting of Shubnikov-de 0.80°K 0.56°K 
Haas data. 

Soulea Collision time from carrier 0.17 0.07 
mobility. 

Berlincourt Fitting of Shubnikov-de 3.0=bl.O 
and Steeleb Haas data (present 

analysis). 
Berlincourt Comparison of Shubnikov de 3.6 3.4 

and Steele Haas data to present Shub
nikov-de Haas data. 

Berlincourt Fitting of de Haas-van 0.71 0.64 
and Steele Alphen data. 

Shoenberg0 Fitting of de Haas-van 1.5 0.9±0.6 
Alphen data (his analysis) 

Shoenberg Fitting of de Haas-van 0.5 0.6 
Alphen data (present 
analysis). 

a Reference 8. 
b Reference 43. 
c Reference 6. 

42 Y. Bychkov, Zh. Eksperim. i Teor. Fiz. 39, 1401 (1960) 
[English transl.: Soviet Phys.—JETP 12, 977 (1961)]. 

43 T. G. Berlincourt and M. C. Steele, Phys. Rev. 98, 956 (1955). 

In their magnetoresistance curves, only one carrier 
(electron) is prominent. From an analysis of the tem
perature and magnetic field dependence of this data, a 
value of Ar i = 3dzl°K was obtained. In addition, both 
ATi and AT2 may be estimated by the following quali
tative argument.8 The interference structure evident in 
their magnetoresistance data at 1.4°K is no stronger 
than that for our sample at 4.2 °K. Thus, the quantity 
T+AT for their sample at 1.4°K should be greater than 
the same quantity for our sample at 4.2°K. This reason
ing leads to estimates of A r i > 3 . 6 0 K and Ar 2 >3.4°K 
for the Shubnikov-de Haas effect in their sample. 

These Shubnikov-de Haas values are about five 
times the values obtained by a least-squares analysis 
of the de Haas-van Alphen effect, Ar 1=0.71°K and 
Ar2=0.64°K. We have also analyzed Shoenberg's sus
ceptibility data6 in the same manner and obtained 
A r i = 0.5°K and Ar 2 =0.6°K, compared with his esti
mates of 1.5 and 0.3 to 1.5°K, respectively. These values 
of AT are collected in Table I I where they are grouped 
as derived from the Shubnikov-de Haas effect (upper 
half) or the de Haas-van Alphen effect (lower half). 

D. Relation to the Generalized 
Landau Formula 

We now discuss the relation between the analysis just 
presented and that using the generalized Landau for
mula. I t is seen by comparison that the quantity Aai/acl 

may be represented by taking n = %, Wi(r) = Wi(l)r~1/2
J 

and \//i(r)= (r+i)ir. Although the quantity Ao-2 cannot 
be exactly represented in the Landau form, it is im
portant only at high magnetic fields. The validity of this 
equivalence was verified by applying the least-squares 
analysis to test data calculated from the AH theory. The 
experimental magnetoconductivity was also subjected 
to the least-squares analysis. The results for the periods 
are in substantial agreement with those found from the 
magnetoresistivity. The effective masses were also in 
good agreement, as shown in Table I I I . The table also 
summarizes all of the present results for field and tem
perature dependence masses, as well as the results ob
tained by other authors. 

Since this analysis was applied to the quantity H2axx, 
which has the same field dependence as axx/aGh the 
value of n chosen was J. For vxx alone, the value would 
be — §. The least-squares analysis for the magneto-
conductivity in Sec. I l l was for a= 1/p, instead of <rxx. 
The two differ by the factor l+(RaH)2

y the maximum 
value of which was 1.1 in the data actually used. How
ever, this factor varies very little with temperature and 
should not cause an. error in the temperature depend
ence effective mass. However, it does vary with mag
netic field by about 5 % over the range of fields used; and 
so neglecting it could cause some error in the value of 
AT. Actually, good agreement was found both for the 
effective masses and for the AT's when the magnetic 
field was parallel to thec axis (6 = 0°). When the magnetic 
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TABLE III. Summary of effective mass values in the graphite layer plane. The adopted values 
are weighted averages of values found in the present work. 

Source Method of determination 
Electron 
mi*/m0 

Hole 

Present work 
Present work 
Present work 
Present work 
Present work 
Soulea 

Berlincourt 
and Steele ;b 

present work 
Shoenbergc 

Shoenberg 
Nozieresd 

Inouee 

Field dependence; magnetoresistivity 
Temperature dependence; magnetoresistivity. 
Field dependence; magnetoconductivity. 
Temperature dependence; magnetoconductivity. 
AH theory; magnetoconductivity. 
Field dependence; galvanomagnetic ratio. 
Field dependence; susceptibility 
Temperature dependence; susceptibility. 

Temperature dependence; susceptibility; His analysis. 
Present analysis. 
Cyclotron resonance; theory. 
Cyclotron resonance; theory. 

Adopted values. 

0.040 
0.038 
0.040 
0.038 
0.040 
0.030 
0.039 
0.038 

0.036 
0.037 
0.031 

0.039±0.001 

0.058 
0.057 
0.056 
0.055 
0.058 
0.060 
0.062 
0.057 

0.07 
0.058 
0.066 
0.053 

0.057±0.002 

a Reference 8. 
b Reference 43. 
0 Reference 6. 
d Reference 16. 
• M. Inoue, J. Phys. Soc. Japan 17, 808 (1962). 

field is not parallel to the c axis, considerable experi
mental work and numerical analysis would be necessary 
to obtain the experimental magnetoconductivity. How
ever, since we wanted to obtain values only for the 
periods and effective masses, it was sufficient to use 
just the inverse resistivity. 

Table III also includes the results of our least-squares 
analysis of the susceptibility data of Shoenberg and of 
Berlincourt and Steele. The adopted values of 0.039 
nto for electrons and 0.057mo for holes, listed in the 
table along with their uncertainties, were chosen in 
order to include all of the different estimates made in the 
present work. The periods found from Shoenberg's data 
were 2.21 X10-5 and 1.63 X10~5 G"1, in good agreement 
with his values of 2.20X 10~5 and 1.65X 10~5 G"1. These 
values differ from those reported here, and Shoenberg44 

suspects that there was an error of a few percent in his 
magnet calibration. The periods found from Berlincourt 
and Steele's data are 2.12X10"5 and 1.57X10~5 G"1, in 
fair agreement with those reported here. In addition, 
the absolute magnitude of the susceptibility parallel to 
the c axis is related to the curvature of the Fermi sur
face at the maximum cross section19 (perpendicular to 
the c axis). This curvature can be expressed in terms of 
the anisotropy ratio of the ellipsoidal surface which co
incides with the true Fermi surface at its "bulge," and 
is thus a rough estimate of the Fermi surface aniso
tropy. The anisotropy values found from Shoenberg's 
data are 10 for electrons and 15 for holes; those from 
Berlincourt and Steele's data are 11 for electrons and 
18 for holes. These values are subject to considerable 
uncertainty, but are consistent with the anisotropics 
found in Sec. III. 

44 D. Shoenberg (private communication). 

V. CONCLUSIONS 

One of the main conclusions of this investigation is 
that the electron and hole Fermi surfaces in graphite 
are closed in all directions. These surfaces are, however, 
highly elongated in the direction of the hexagonal axis, 
and have anisotropy ratios of 12.1±1.4 for electrons 
and about 17 for holes. Although this result is based on 
a direct observation of the oscillatory term due to elec
trons throughout the angular range, the hole component 
could be resolved only to 0^84°. At this orientation, the 
hole term already showed a strong deviation away from 
a cylindrical surface. In addition, both oscillatory terms 
showed a convex surface variation about 0=0°, whereas 
the Haering and Wallace model, with a corrugated 
cylindrical Fermi surface, would predict a concave be
havior for the component with the largest period. The 
latter is the component we identify as being due to 
electrons and is the very term we see completely around 
to 90°. And further, the quite general SW band model 
requires that if the electron surface is closed, the hole 
surface must also be closed. 

Inspection of the shape of these surfaces showed the 
electron surface (from 6 variation) to be very close to a 
true ellipsoid, whereas the hole surface can be described 
more as "diamond-shaped," having pointed ends along 
the kz axis. Cross sections from the azimuthal <j> orienta
tion were considerably more difficult to resolve. Al
though more indefinite, the present results do give 
sufficient information to allow a moderate degree of 
trigonal asymmetry. 

Good agreement between the orbital effective masses 
derived from the dependence of the oscillatory ampli
tude on temperature and magnetic field substantiates a 
value of 0.039w0 for electrons and 0.057w0 for holes for 
motion in the basal plane. In addition, the variation of 
the orbital masses with 6 is consistent with that ex-
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FIG. 13. The Brillouin zone for graphite, showing the placement 
of the electron and hole Fermi surfaces. The drawing is to scale, 
except that the lateral dimensions of the Fermi surfaces have been 
magnified by about a factor three. The center of the zone is de
noted by T. The kz axis is parallel to the c axis (hexagonal axis) of 
the crystal, and the kA direction is parallel to an a axis. The figure 
is a superposition of electron surfaces in the conduction bands and 
hole surfaces in the valence band. The degeneracy of the valence 
and conduction bands along the vertical zone edge HH' requires 
that the ends of the electron and hole surfaces touch as shown. 
The part of the electron Fermi surface which overlaps the hori
zontal faces is in the second conduction band, and is plotted in the 
second Brillouin zone. The degeneracy of the two conduction 
bands on the horizontal zone faces allows the overlapping part to 
be a smooth continuation of the main surface. 

pected for the derived Fermi surfaces. All of the above 
conclusions rest entirely on the present experiment, 
except for the electron-hole identification, which depends 
on previous cyclotron resonance work. For a direct 
identification, however, a more satisfying and internally 
consistent procedure would be to observe the effect on 
the periods by shifting the Fermi level in a known way. 
This approach is now being investigated by controlled 
doping, using the acceptor boron.45 

These Fermi surface anisotropics allow us to predict 
the anisotropy in the electrical conductivity. If we 
assume that the electron and hole relaxation times 
( T I = 2 . 0 X 1 0 - 1 3 sec and r 2 -3 .4XlO- 1 3 sec in the basal 
plane at 298°K)17 are isotropic and constant over the 
Fermi surfaces and that Ni^.N<i, then the conductivity 
anisotropy ratio at room temperature is 

L 

T\ T2 

Wj.*(l) Wj.*(2)J 

T\ 

+ 
T2 

.*»„*(!) w„*(2) 
•1=190. 

(5.1) 

This value is in reasonable agreement with the best 
experimental ratio46 of 110 to 175, considering the 
approximation of relaxation time isotropy and other un
certainties involved. 

45 D. E. Soule, Proceedings of the Fifth Conference on Carbon 
(Pergamon Press, Inc., New York, 1961), Vol. I, p. 13. 

Note added in proof. Since this paper was written, de Haas-van 
Alphen measurements have been made on dilute boron-doped 
graphite crystals [D. E. Soule, I.B.M. J. Res. Develop, (to be 
published).] A preliminary analysis of the data supports the above 
identification of the two major oscillatory periods. 

46 W. Primak and L. H. Fuchs, Phys. Rev. 95, 22 (1954); W. 
Primak, ibid. 103, 544 (1956). 

Comparison between the electron density iVi(nonosc) 
(total from all Fermi surfaces in the Brillouin zone) and 
iVi(osc)/Q (that due to one surface) definitely estab
lishes that there are four electron Fermi surfaces in the 
Brillouin zone. From size and symmetry arguments, 
there are two possible locations for these surfaces in the 
reduced Brillouin zone shown in Fig. 13: (le) all four 
aligned vertically along the center kz axis between A 
and A', and (2e) aligned along the outer six zone edges 
HHf, one-third of a surface at the top and one-third 
at the bottom as shown in the figure. Location (le) is 
impossible on the basis of all band calculations47 which 
agree that the energy of the conduction band at the 
center of the Brillouin zone, T, is about 10 eV above the 
energy at the zone edges. Thus, (2e) is taken as the 
accepted scheme. 

For the hole Fermi surfaces, we assume initially that 
^ (osc^TY^nonosc ) . Due to the uncertainty in the 
anisotropy of these surfaces, values of Q= 2 or 3 might 
be acceptable. For 2, one would find an iV^osc) value 
14 to 2 1 % less than Ar

2(nonosc), whereas 3 results in a 
value of 18 to 29% greater than Ar

2(nonosc). A choice 
cannot be made, therefore, on this basis alone, and one 
must consider the most probable location of these sur
faces. For two hole surfaces, two possible locations are 
(lh) both aligned along the central k2 axis between A 
and A', and (2h) aligned along the outer six zone edges 
HH'} one-third of a surface at the middle as shown in 
the figure. For three surfaces, there are also two possible 
locations: (3h) all three aligned along the central kz 

axis between A and A' and (4h) aligned vertically at 
the center of the vertical Brillouin zone faces, one-half 
a surface at each point M in the figure. Again, locations 
(lh) and (3h) are ruled out,47 as with the electron case 
(le), because the energy of the valence band at the 
center is 7 to 10 eV below the energy at the zone edge. 
The calculated47 energy at point M is about 2 eV below 
the energy at the zone edge K so that possibly (4h) is 
also unlikely although the argument against it is not so 
strong as for the other cases. However, since group 
theory requires that the conduction and valence bands 
are degenerate along the vertical zone edges, and since 
the two electron Fermi surfaces were established above 
to be located along the zone edges with their combined 
lengths less than the zone height, then the hole surfaces 
also are located at the zone edges (location 2h) as shown 
in the figure. This result agrees with the parameterized 
SW model and represents that assumed in Sec. I l l in 
calculating the hole Fermi surface length. The Fermi 
surfaces as shown in Fig. 13 therefore represent the most 
probable configuration for graphite. 

47 See, for example, R. R. Haering and S. Mrozowski, Progress 
in Semiconductors (Heywood and Company Ltd., London, 1960), 
Vol. V, p. 273. The most accurate band calculation is by F. J. 
Corbato, Proceedings of the Third Conference on Carbon (Per
gamon Press, Inc., New York, 1959), p. 173; and Quarterly Prog
ress Report, Solid State and Molecular Theory Group, M.I.T. 
1956, p. 23 (unpublished). 
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Knowing the Fermi surface positions, we can next 
consider quantitatively their size with respect to the 
reduced Brillouin zone. The maximum Fermi surface 
radii perpendicular to the c axis found from Pi(0) and 
P2(0) using Eq. (1.1) are r!=1.21±0.02 for electrons 
and r2= 1.42±0.02 for holes in units of 106 cm-1. These 
are 0.72 and 0.84%, respectively, of the distance along 
kA from a corner K to the center T of the zone, 
47r/3#o= 170.3. In the kz direction, the height of the 
zone is 2W/CQ=93.6, whereas the two electron surfaces 
have heights of 29.3±3.4 each. Due to the degeneracy of 
the valence and conduction bands along the vertical 
zone edge, the hole surface tips abut the tips of the 
electron surfaces, as shown in the figure. Thus, with a 
hole surface height of about 49.2, the electron surfaces 
will overlap the top and bottom of the Brillouin zone 
by about 7.1. 

This result provides a new and direct measure of A, 
which represents the difference in potential between the 
two types of sites for carbon atoms in the graphite 
lattice.48 According to the parameterized SW model,11,10 

the relation between the value of kz at the upper end of 
the hole Fermi surface and the Fermi energy f is given by 

A = r+27icos(co*, /2) , (5.2) 

where 71 is the nearest layer interaction integral. Then, 
using the well established values of 0.02 eV for the 
Fermi energy6*8'10 and 0.30 eV for the 71 parameter,49-18 

we obtain 
A ~ - 0 . 1 2 eV. 

Previous estimates of this parameter have given 
values closer to zero, but these methods were more in
direct.48,10*18 Recently, however, another determination 
based on the temperature dependence of the g factor50 

gave a value of about —0.1 eV, in reasonable agreement 
with the above value. 

As mentioned above, the azimuthal orientation re
sults set a limit on the amount of departure from rota
tional symmetry about the c axis which the Fermi sur
faces may have, a limit consistent with the available 
information. The band parameter which describes the 
departure from trigonal symmetry has been called 73. 
The simple tight-binding theory states10 that 73 is 
nearly equal to another band parameter 74. A value of 
74 has been found from analysis of the g-shift in the 
electron spin resonance,50 which yielded a value of 
74=0.28 eV. We have calculated the shapes of the cross 
sections, perpendicular to the c axis, of the Fermi sur
faces for 73 = 0.28 eV. We find that the cross section of 
the electron surface resembles a triangle with rounded 
corners, as shown in Fig. 14. The radius vector varies as 

48 J. L. Carter and J. A. Krumhansl, J. Chem. Phys. 21, 2238 
(1953). 

49 Y. H. Ichikawa, Phys. Rev. 109, 653 (1958). 
60 J. W. McClure and Y. Yafet, Proceedings of the Fifth Confer

ence on Carbon (Pergamon Press, Inc., New York, 1962), Vol. I, 
p. 22. 

ELECTRON HOLE 

FIG. 14. Calculated maximum Fermi surface cross sections per
pendicular to the hexagonal axis showing the trigonal asymmetry. 
The point K is at the center of the vertical Brillouin edge and the 
point K' is at a different place on the same edge (see Fig. 13). 
The lines marked kA represent the Brillouin zone boundaries. The 
solid curves are calculated for 73 = 0.28 eV, and the dashed curves 
(circles) are for 73 = 0. Both sets of curves are to the same scale, 
with the values of the radii of the circles derived from the periods 
at 0=0° given by ri = 1.21±0.02X106 cm"1 and r2 = 1.42±0.02 
X106 cm"1. For each carrier the areas enclosed within the two 
curves are the same to within 1%. 

a function of the azimuthal angle <£ by about ± 1 6 % . 
The deviation between the extremal periods at 0=90°, 
as obtained from the two perpendicular magnetic field 
rotation axes, would be about 10%. The cross section 
of the hole surface is more distorted, resembling a 
triangle with rounded corners and with concave sides, 
as shown in Fig. 14. The azimuthal variation of the 
radius vector is about ± 4 0 % , and the deviation between 
the two extremal periods at 0=90° would be about 20%. 
The expected deviation between periods predicted for 
the two rotation schemes is less for electrons and greater 
for holes than those deduced from the simple triangular 
model discussed in Sec. I I I . This value for 73 would pre
dict a deviation of approximately < 4 . 6 % for the elec
tron surface at 0=80°, compared with the observed 
deviation of ~ 1 % . For the hole surface, the predicted 
deviation would be < 2 . 9 % at 6=60°, compared with 
the observed deviation of ~ 1 % . Although subject to 
considerable uncertainty, these results indicate that the 
actual Fermi surfaces are closer to rotational symmetry 
than the above 73 band model would predict, that is 73 
must be considerably smaller than 0.28 eV. Very accur
ate data at the higher values of 6 would be needed to 
determine the value of 73 reliably from the shape of the 
Fermi surfaces. Even so, this fact that 73 should be small 
has been substantiated by recent results obtained from 
magneto-optical reflection measurements,51 where 73 
was found to be 0.145 eV at 4.2°K. 

The present work provides the most complete test to 
date of the Adams-Holstein theory. I t is important that 
the AH theory correctly describes the amplitude of the 
oscillations, since the competing theories predict ampli
tudes which are very much smaller.25 In addition, the 
AH theory reproduces the shape of the oscillations, 
which are so asymmetric and have such sharp cusps that 
many harmonics are needed for their description. Such a 

51 M. S. Dresselhaus and J. G. Mavroides (to be published). 
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fit to the oscillation shape verifies that the harmonic 
amplitudes are proportional to r~1/2 and not to r~3/2, as 
proposed by competing theories, which would give 
sharp minima in <rxx instead of maxima.2* There are, 
however, two important points of disagreement be
tween the AH theory and our results. The first is the 
"mid-line drift" observed in axx. Although there are 
several effects which could be responsible, we suspect 
that the dependence of the range of the scattering po
tential upon the magnetic field strength is most likely. 
The second point of disagreement is that the AT values 
(effective temperature shift due to collision broadening) 
found from curve-fitting the Shubnikov-de Haas data 
are several times greater than the AT values estimated 
using the conductivity relaxation time. Both of these 
points indicate that more theoretical work needs to be 
done on the details of the scattering process. 

We have verified that the generalized Landau formula 
may be used to analyze Shubnikov-de Haas data for 
the periods, masses, and AT values. This fact was con
cluded theoretically, since the periodicity and the tem
perature dependence are the same for all theories of the 
Shubnikov-de Haas effect. The generalized Landau 
formula was tested experimentally by analyzing the 
magnetoconductivity data at 0=0° obtaining good 
agreement with the results of the analysis using the AH 
formula. Another simplification which was successfully 
tested on the data at 6=0° for the present case of gra
phite was the replacement of the magnetoconductivity 
by the measured conductivity (inverse of the measured 
resistivity). These two simplifications considerably re
duced the work involved in taking data and performing 

the numerical analysis. Furthermore, use of the general
ized Landau formula gave results which do not depend 
upon any specific theory. 

The use of the least-squares method to analyze the 
data was, on the whole, successful. Results for the 
periods are in good agreement with those using the 
usual integer plot, which was used for the electron 
term in the low magnetic field region where the hole 
term is negligible. However, the least-squares method 
does have certain pitfalls. To obtain reliable results, 
extremely accurate magnetic field calibrations must be 
used and attention must be given to the statistical 
weighting scheme. 

We have established that the AT values found from 
fitting Shubnikov-de Haas data may be considerably 
larger than those found from fitting de Haas-van Alphen 
data. I t was also found from the AT's (and therefore 
the impurity concentration) for Berlincourt and Steele's 
sample are about four to five times those found in this 
work, showing the higher quality of the present sample. 
This was expected in view of a previous comparison of 
the nonosciliatory magnetoresistance results,14 where 
the ratio of the average relaxation times was found to be 
about three. 
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